Skip to content
Kurt Robert Rudolph edited this page Jun 29, 2012 · 5 revisions

Fri Jun 29 09:18:22 CDT 2012

Homework

Do not hand in

pp. 183 - 185

  • 4.20,
  • 4.21
  • 4.26 (a)

Exam

Tuesday

Review on Monday

Quiz

  • Let [ln k! = \frac{ 1}{ 2} \ln 2 \pi + x] Write out [x] as a sum of three terms.
  • Let [M = ] # of integers in [{1,2,3, \dots, N}] that are real prime to [N = 3^{20} 5^{30} 7^{40}]

Def

If [P( X = n) = (1 - p)^{n - 1} P] where [X] is discrete with possible values [1, 2, 3, \dots] we say [X] is geometric r.v. with parameter [p].

Note [\sum\limits_{n = 1}^{\infty}{ (1 - p)^{n - 1}} p = p \frac{ 1}{ 1 - (1 - p)} = 1]

Clone this wiki locally